Flavonoids from natural products are well-identified as potential antiviral agents in the treatment of SARS-CoV-2 (COVID-19) infection and related diseases. However, some major species of flavonoids from Chinese traditional folk medicine, such as of Artemisia argyi (A. argyi), have not been evaluated yet. Here, we choose five major flavonoids obtained from A. argyi, namely, Jaceosidin (1), Eupatilin (2), Apigenin (3), Eupafolin (4), and 5,6-Dihydroxy-7,3,4-trimethoxyflavone (5), compared to the well-studied Baicalein (6), as potential inhibitors analogs for COVID-19 by computational modeling strategies. The frontier molecular orbitals (FMOs), chemical reactivity descriptors, and electrostatic surface potential (ESP) were performed by density functional theory (DFT) calculations. Additionally, these flavonoids were docked on the main protease (PDB: 6LU7) of SARS-CoV-2 to evaluate the binding affinities. Computational analysis predicted that all of these compounds show a high affinity and might serve as potential inhibitors to SARS-CoV-2, among which compound (5) exhibits the least binding energy (−155.226 kcal/mol). The high binding affinity could be enhanced by increasing the electron repulsion due to the valence shell electron pair repulsion model (VSEPR). Consequently, the major flavonoids in Artemisia argyi have a significant ability to reduce the deterioration of COVID-19 in the terms of DFT calculations and molecular docking.
Loading....